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ABSTRACT

We describe a point-centered diffusion discretization for 3-D unstructured meshes
of polyhedra. The method has several attractive qualities, including second-order
accuracy and preservation of linear solutions. A potential drawback to the scheme is
that the diffusion matrix is asymmetric, in general. Results of numerical test problems
illustrate the behavior of the scheme.

I. INTRODUCTION

Recently there has been increased interest in the design of accurate diffusion differ-
encings for non-orthogonal meshes. Morel and Dendy1 have developed a cell-centered
differencing scheme for 2-D logically-rectangular meshes that is a vast improvement
over existing cell-center methods. A point-centered discretization with many of the
same properties has been described by Palmer2. This scheme has the added benefits
of working on an unstructured mesh of polygons and having fewer unknowns than
Morel’s scheme.

In this paper, we extend the aforementioned point-centered method to three-
dimensional unstructured meshes of polyhedra. The method is designed to have the
following attractive properties: 1) equivalence with the standard seven-point point-
centered scheme on an orthogonal mesh; 2) preservation of the homogeneous linear
solution; 3) second-order accuracy; 4) strict conservation within the control volume
surrounding each point; and 5) convergence to the exact result as the mesh is refined,
regardless of the smoothness of the mesh. A potential disadvantage of the method is
that the diffusion matrix is asymmetric, in general.
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Figure 1: A Portion of an Unstructured Mesh in 3-D.

II. DERIVATION OF THE METHOD

We begin with the time-independent one-group diffusion equation, written as two
first-order equations,

−→
∇ ·

−→
J + σaφ = Q, (1)

−→
J = −D

−→
∇φ. (2)

Eq. (1) is a statement of balance, i.e. the scalar flux φ is conserved. Eq. (2), commonly

known as Fick’s law, denotes that the current
−→
J is proportional to the gradient of

the flux φ, where the constant of proportionality is the diffusion coefficient D.
We now consider an unstructured mesh of polyhedra in Cartesian geometry, a

representative portion of which is shown in Figure 1. Each polyhedral cell is divided
into subcell volumes called wedges. A wedge is a tetrahedron with vertices at the point
p, the zone center z, the face center f and the edge center e. Figure 2 illustrates a
wedge (denoted by w) in a cubic zone. The concept of tetrahedral subcell volumes is
not our creation. It was originally suggested by Burton3 in his hydrodynamics work.
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Figure 2: A Wedge in a Cubic Zone.

Our first step is to enforce particle balance by integrating Eq. (1) over the control
volume associated with the point of interest. This control volume is defined to be the
union of all wedges surrounding the specified point. After performing this integration,
we obtain ∑

w∈p

−→
Afez,w ·

−→
Jfez,w +

∑
w∈p

Vwσa,w

φp =
∑
w∈p

VwQw, (3)

where Vw is the volume of wedge w, φp is the average flux in the control volume

associated with point p, and the term
−→

Afez,w ·
−→
Jfez,w should be interpreted as the area

of the triangular face fez of the wedge w, times the unit outward normal to that face,

dotted into the current
−→
J on that face. Our notation w ∈ p refers to all the wedges

w which surround the point p.

The next step in our derivation is the elimination of the currents
−→
Jfez,w. We do

this by defining them in terms of fluxes at the points (φp), zone centers (φz), face
centers (φf ) and edge centers (φe). Focusing now on the first term in Eq. (3), we can
make use of Eq. (2) to write

−→
Afez,w ·

−→
Jfez,w = −Dw (

−→
Afez ·

−→
∇φ)

∣∣∣∣
w
,

= −Dw̃ (
−→
Afez ·

−→
∇φ)

∣∣∣∣
w̃
. (4)
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Figure 3: Two wedges: w and w̃.

We have used w̃ to designate the wedge that shares the face fez with wedge w (see
Figure 3). Physically, Eq. (4) states that the normal component of the current crossing
the face fez is continuous.

The gradient
−→
∇φ can be written in terms of the fluxes at the vertices of the wedge

if we make use of the following relation:

〈
−→
∇φ〉w =

1

Vw

∫
z

d3r
−→
∇φ,

=
1

Vw

∮
z

d2r
−→
n φ,

=
1

Vw

∑
f,w

−→
Af,wφf,w. (5)

Here,
−→
Af,w refers to the area of a face of a wedge, times its unit outward normal.
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After a bit of algebra, Eq. (4) becomes

−→
Afez,w ·

−→
Jfez,w =

Dw

−→
Afez,w
3Vw

( −→
Afez,w φp +

−→
Afep,w φz +

−→
Afzp,w φe +

−→
Azep,w φf

)
. (6)

Our goal is to write Eq. (6) as a function only of point fluxes. We can quickly
eliminate the edge flux φe by imposing the requirement that the normal component
of the current crossing the face fez be continuous. We find that the edge flux can be
described by

φe = (1− γw − δw − δw̃)φf + γwφz + δwφp + δw̃φp̃, (7)

with the associated relations:

γw = −
Dw

( −→
Afez,w ·

−→
Afep,w

)
+Dw̃

( −→
Afez,w̃ ·

−→
Afep,w̃

)
Dw

( −→
Afez,w ·

−→
Afzp,w

)
+Dw̃

( −→
Afez,w̃ ·

−→
Afzp,w̃

) , (8)

δw = −
Dw

( −→
Afez,w ·

−→
Afez,w

)
Dw

( −→
Afez,w ·

−→
Afzp,w

)
+Dw̃

( −→
Afez,w̃ ·

−→
Afzp,w̃

) . (9)

We note that if Dw = Dw̃ the edge flux is a simple average of the two point fluxes φp
and φp̃. At this point, our diffusion equation is written in terms of the fluxes at the
point, face and zone centers.

Our next task is to define the zone-center fluxes as functions of the point- and
face-center fluxes. We choose to define φz as an inverse-length-weighted average of
extrapolations from the point fluxes surrounding that zone; i.e.

φz =
∑
w∈z

ww

(
φp +

−→
lpz · 〈

−→
∇φ〉z

)
, (10)

ww =

1∣∣∣∣−→lpz ∣∣∣∣∑
p∈z

1∣∣∣∣−→lpz ∣∣∣∣
. (11)

These extrapolations involve a zone-averaged gradient 〈
−→
∇φ〉z, which we define in the

same manner as before,

〈
−→
∇φ〉z =

1

Vz

∫
z

d3r
−→
∇φ,
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=
1

Vz

∮
z

d2r
−→
n φ,

=
1

Vz

∑
f∈z

−→
Afφf . (12)

where Vz is the volume of the zone, and
−→
n is the unit outward normal to the surface

of the zone and
−→
Af is the area of the zone face times the unit outward normal to that

face. In general this zone-averaged gradient is a function of the fluxes at all the points
associated with that zone. We note that the success of our method does not hinge on
the choice of inverse-length weighting; other weighting schemes could be used.

The face-center flux is defined in an analogous way,

φf =
∑
w∈f

vw

(
φp +

−→
lpf · 〈

−→
∇φ〉f

)
, (13)

vw =

1∣∣∣∣−→lwf ∣∣∣∣∑
w∈f

1∣∣∣∣−→lwf ∣∣∣∣
. (14)

〈
−→
∇φ〉f =

1

Af

∫
f

d2r
−→
∇φ,

=
1

Af

∮
f

ds
−→
n φ,

=
1

Az

∑
w∈f

−→
lweφp. (15)

This completely defines our unstructured diffusion method, aside from boundary
conditions. In general, each point is connected to every point associated with the
zones surrounding that point. Our definitions for φz and φf can cause the diffusion
matrix to be asymmetric. As a result, we have chosen to solve the matrix with
a biconjugate gradient technique. There are other algorithms that could be used,
but we will not concern ourselves with this issue here. On an orthogonal mesh the
diffusion operator reduces to the standard point-centered seven-point stencil.
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Figure 4: 3D version of Kershaw’s “z-mesh”.

III. NUMERICAL RESULTS

In this section, we present the results of a few test problems designed to demon-
strate that our method preserves the linear solution and is second-order accurate.
First we consider a homogeneous, source-free unit cube with reflecting boundaries
located at y = 0, y = 1, z = 0 and z = 1, a vacuum boundary at x = 0, and a unit
extrapolated flux [φ(1 + 2D, y, z) = 1] at x = 1. We choose D to be 1

1000
and set

σa to 0. We solve this problem on a 3-D version of Kershaw’s4 “z-mesh”, as seen in
Figure 4. This mesh has 784 (14×14×4) hexahedral zones, some of which have faces
that intersect at very acute angles. The exact solution to this problem is linear in
the x coordinate,

φ(x, y, z) =
x+ 2D

1 + 4D
. (16)

Figure 5 is a contour plot of the solution of this problem in the plane z = 0.5. The
contours are exactly linear, as they are everywhere in the problem domain. In fact,
we obtain the exact solution for this problem, independent of the mesh we are using.
This is an important result because other diffusion methods have trouble obtaining
the linear solution on these meshes.

A second test problem, suggested by Morel et al1, is designed to illustrate that the
method is second-order accurate and involves the solution of the following diffusion
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Figure 5: Contours of the solution to the “z-mesh” problem for z = 0.5.

problem:

−D
[
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

]
φ = z2, (17)

with reflecting boundaries located at x = 0, x = 1, y = 0 and y = 1, and vacuum
boundaries at z = 0 and z = 1. We choose the diffusion coefficient D to be 1

30
and

set the absorption cross section to zero. The exact solution to this problem is quartic
in the z coordinate,

φ(x, y, z) =
1

12D

[(
1 + 8D

1 + 4D

)
(z + 2D)− z4

]
. (18)

We solve this problem on five different orthogonal and random meshes of tetra-
hedra and observe the change in the L2 norm of the error as a function of mesh size.
A typical random mesh is shown in Figure 6. These meshes are constructed in the
following manner: 1) a cubic mesh is generated, 2) each cubic zone is divided into
6 tetrahedra, 3) if a random grid is desired, the points are then randomly displaced
by some small distance. Figure 7 is a plot of the error as a function of the “mesh
size”; that is the grid spacing of the cubic mesh from which the tetrahedral meshes
are generated. As we refine the grids, we begin to see that the error goes down by
a factor of four as the mesh spacing is halved. The new point-centered method is
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Figure 6: A 10× 10× 10 tetrahedral random mesh.

indeed second-order accurate both on the orthogonal and random meshes. This is an
important result, for some 2D diffusion discretizations cannot make this claim4.

IV. CONCLUSIONS

We have successfully extended a point-centered unstructured mesh diffusion scheme
to polyhedral grids in 3D Cartesian geometry. The method continues to have many
desirable qualities, principally second-order accuracy and preservation of the homo-
geneous linear solution. It has a potential drawback in that the diffusion matrix is
asymmetric in general and must be solved with non-standard iterative techniques.
It is worth noting that there are striking similarities between the new method and
certain finite-element schemes5. However, while they have many of the same charac-
teristics, they are derived using two very different methodologies.
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Figure 7: Comparison of errors versus mesh size.
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